Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(3): e9888, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911318

RESUMO

Soil freeze-thaw processes lead to high nitrous oxide (N2O) emissions and exacerbate the greenhouse effect. The wetlands of the Inner Mongolia Plateau are in the pronounced seasonal freeze-thaw zone, but the effect of spring thaw on N2O emissions and related microbial mechanisms is still unclear. We investigated the effects of different periods (freeze, freeze-thaw, and thaw) on soil bacterial community diversity and composition and greenhouse gas emissions during the spring freeze-thaw in the XiLin River riparian wetlands in China by amplicon sequencing and static dark box methods. The results showed that the freeze-thaw periods predominantly impact on the diversity and composition of the bacterial communities. The phyla composition of the soil bacteria communities of the three periods is similar in level, with Proteobacteria, Chloroflexi, Actinobacteria, and Acidobacteria dominating the microbial communities. The alpha-diversity of bacterial communities in different periods varies that the freezing period is higher than that of the freeze-thaw period (p < .05). Soil total carbon, soil water content, and microbial biomass carbon were the primary factors regulating the abundance and compositions of the bacterial communities during spring thawing periods. Based on functional predictions, the relative abundance of nitrification and denitrification genes was higher in the freezing period than in the thawing period, while the abundance was lowest in the freeze-thawing period. The correlation results found that N2O emissions were significantly correlated with amoA and amoB in nitrification genes, indicating that nitrification may be the main process of N2O production during spring thaw. This study reveals potential microbial mechanisms of N2O emission during spring thaw and provides data support and theoretical basis for further insight into the mechanism of N2O emission during spring thaw.

2.
Sci Total Environ ; 870: 161956, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36737024

RESUMO

The relationship between biodiversity and ecosystem multifunctionality (BEMF) has become an ecological research hot spot in recent years. Changes in biodiversity are non-randomly distributed in space and time in natural ecosystems, and the BEMF relationship is affected by a combination of biotic and abiotic factors. These complex, uncertain relationships are affected by research scale and quantification and measurement indicators. This paper took the Daihai littoral zone wetlands in Inner Mongolia as the research object to reveal the dynamic succession of wetland vegetation and ecosystem function change characteristics and processes during the shrinkage of the lake. The main findings were as follows: the combined effect of aboveground (species and functions) and belowground (bacteria and fungi) diversity was greater than the effect of single components on ecosystem multifunctionality (EMF) (R2 = 80.00 %). Soil salinity (EC) had a direct negative effect on EMF (λ = -0.22), and soil moisture (SM) had a direct positive effect on EMF (λ = 0.19). The results of the hierarchical partitioning analysis showed that plant species richness (Margalef index) was the ideal indicator to explain the EMF and C, N, and P cycling functions in littoral zone wetlands with explanations of 12.25 %, 7.31 %, 7.83 %, and 5.33 %, respectively. The EMF and C and P cycles were mainly affected by bacterial diversity, and the N cycle was mainly affected by fungal abundance in belowground biodiversity. Margalef index and sand content affected EMF through cascading effects of multiple nutrients (FDis, CWMRV, CWMLCC, and bacterial and fungal abundance and diversity) in littoral zone wetlands. This paper provides a reference for exploring the multifunctionality maintenance mechanisms of natural littoral zone wetland ecosystems in the context of global change, and it also provides important theoretical support and basic data for the implementation of ecological restoration in Daihai lake.


Assuntos
Ecossistema , Áreas Alagadas , Lagos , Biodiversidade , Solo , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...